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We investigate interference effects of the backscattering current through a double-barrier structure in an
interacting quantum wire attached to noninteracting leads. Depending on the interaction strength and the
location of the barriers, the backscattering current exhibits different oscillation and scaling characteristics with
the applied voltage in the strong and weak interaction cases. However, in both cases, the oscillation behaviors
of the backscattering current are mainly determined by the quantum mechanical interference due to the exis-
tence of the double barriers.
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I. INTRODUCTION

As a fundamental many-body physical model, one-
dimensional �1D� interacting electron systems are an ever-
lasting research topic. Unlike its high-dimensional counter-
parts, which are well understood from the quasiparticle
picture in the Fermi-liquid theory,1 1D interacting electron
systems can be described by bosonic gapless collective exci-
tations of the fermion density fluctuations within the frame-
work of the Tomonaga-Luttinger liquid theory.2–4

The Tomonaga-Luttinger liquid behaviors in 1D systems
have been revealed by measuring the transport properties of
cleaved-edge overgrowth quantum wires,5 quantum Hall
systems,6 and single-wall carbon nanotubes.7 It opens up the
possibilities to test some theoretical predictions even in sim-
plified pure physical models and triggers intensive attention
to the physics of the Tomonaga-Luttinger liquids.8

In mesoscopic Fermi-liquid systems, electronic transport
is modeled by the transmission of an incident electron
through a potential barrier, and the conductance of the sys-
tem is directly related to the transmission probability.9 How-
ever, potential barriers play a counterintuitive role in the
Tomonaga-Luttinger liquids. In a seminal paper, Kane and
Fisher10 showed that the barrier is irrelevant for attractive
electron-electron interactions and cuts the system into two
pieces for repulsive interactions. In transport measurements,
the Tomonaga-Luttinger liquid quantum wires of finite
length need to be connected to leads acting as electron res-
ervoirs. If the reservoirs are modeled as 1D noninteracting
systems, then the model of the inhomogeneous Tomonaga-
Luttinger liquids with different interaction strengths in dif-
ferent parts is appropriate to investigate the transport prop-
erties of the Tomonaga-Luttinger liquids.11,12 It was argued
that the dc conductance is not renormalized by the
interactions.11,12 An interesting phenomenon of Andreev-like
reflections has been shown at the interfaces between the in-
teracting wire and the noninteracting leads due to the mis-
match of the interaction strengths.12 The presence of an im-
purity results in interference of the bosonic excitations which
can be modulated by an applied bias voltage and thus leads
to characteristic oscillations of the backscattering current as a

function of the dc voltage.13 Feldman and Gefen14 showed
that backscattering off a weak dynamic impurity would en-
hance the current. Peça et al.15 and Recher et al.16 demon-
strated interesting Fabry-Pérot interference patterns of the
nonlinear conductance as a function of the bias voltage in
carbon nanotubes attached to metallic reservoirs, where
backscattering processes mainly occur at the two metal-
contact-nanotube interfaces.

In this paper, we investigate interference effects of elec-
tron tunneling through double barriers in an interacting quan-
tum wire. We assume that the 1D interacting electron system
is adiabatically attached to two 1D noninteracting electron
systems, which act as electron reservoirs. Such an assump-
tion excludes the possibility of backscattering at the inter-
faces between the interacting and noninteracting segments.
Backscattering events take place at the positions of the
double barriers. Due to the existence of the Andreev-like
reflections at the interfaces, electron tunneling through the
double barriers in a Tomonaga-Luttinger-liquid wire is more
complicated and thus expected to be more interesting. As we
show later, there exists a contribution from the quantum me-
chanical interference of bosonic excitations to the back-
scattering current, besides the contributions from back-
scattering off the separate barriers. It is the quantum
mechanical interference that dominates the oscillatory char-
acteristics of the backscattering current as a function of the
applied bias voltage. The aim of this work is to make clear
how the oscillation pattern of the backscattering current in an
interacting quantum wire with double barriers is modulated
by the electron interaction strength and the arrangement of
the double barriers.

II. MODE AND FORMULATION

We consider an interacting quantum wire of length L with
double pointlike barriers, which is at its ends connected adia-
batically to two semi-infinite noninteracting quantum wires
acting as electron reservoirs with electrochemical potentials
�L and �R. The model Hamiltonian can be written as
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H = HW + HB,

HW = �
−�

+�

dx��†�x��− �2

2m

d2

dx2 + ��x����x�

+ U�x��†2�x��2�x�� ,

HB =� dx�†�x�����x − x1� + ���x − x2�	��x� ,

where HW describes both the interacting wire and the inter-
acting leads with varied electron-electron interaction
strengths, i.e., U�x�=U if −L /2�x�L /2 and U�x�=0 else-
where, HB represents the Hamiltonian for the pointlike bar-
riers, and the function ��x�=�L�1−��x+L /2�	+�R��x
−L /2� denotes the externally tunable electrochemical poten-
tial.

Since what we are interested in is the low-temperature
transport properties, it is convenient to reformulate the prob-
lem in the framework of standard bosonization.17 First lin-
earize the energy spectra about the Fermi points 	kF and
introduce two species of electron operators �
�x� �
=R /L
=	� to describe the right-moving and left-moving fermions,
then the excitations of the fermion system can be described
by a bosonic field ��x�. In this way the Hamiltonian for the
fermion system can be recast in the following bosonic form:

H = HW + HB, �1�

HW =
�

2
� dx

1

g�x�� 1

v�x�
��t��2 + v�x���x��2�

−
e


�
�

−�

+�

dxE�x,t���x,t� , �2�

HB = � cos�
4���x1,t� + 2kFx1	

+ � cos�
4���x2,t� + 2kFx2	 , �3�

where g�x�= �1+U�x� /��vF	−1/2 is the interaction parameter,
−eE�x , t�=�x�=−�L��x+L /2�+�R��x−L /2�, and v�x�
=vF /g�x� is the charge density wave velocity.

In terms of the bosonic field �, the current operator can be
written as

Î�x,t� =
e


�
�t��x,t� . �4�

The current-bias relation of the nonequilibrium system is
of interest; it is appropriate to adopt the Keldysh formalism.
Following the path integral technical procedures developed
in Ref. 13 for a static impurity, the average current is ob-
tained,

�I�x,t�� = �I0 − IBS�x,t�� . �5�

In Eq. �5�, �I0�=e2V /h is the background current in the ab-
sence of barriers and �IBS�x , t��=−e�d :�R

†�x , t��R�x , t� : /dt� is
the backscattering current. The average backscattering cur-

rent is the sum of the three contributions to leading order in
� �see the Appendix�,

IBS = IBS
1 + IBS

2 + IBS
12 =

e�2

4�2�
−�

+�

dt sin 
0t�e4�C0�x1,t;x1,0�

+ e4�C0�x2,t;x2,0� + 2e4�C0�x1,t;x2,0�	 , �6�

where 
0=eV /� and C0�x , t ;x� ,0�= ���x , t���x� ,0�
− ��2�x , t�+�2�x� ,0�	 /2�0 are the correlation functions of the
bosonic field ��x , t� in the clean wire limit. These correlation
functions can be obtained by expanding the bosonic field on
the basis of the eigenfunctions, which satisfy a specific inho-
mogeneous equation.13 It is evident that, besides the indepen-
dent contributions from backscattering by the separate barri-
ers, there exists a quantum mechanical interference
contribution to the backscattering current due to the coexist-
ence of double barriers. It is just such an interference term
that gives rise to some interesting transport characteristics in
interacting quantum wires with double barriers.

At zero temperature, the correlation functions yield a sim-
plified expression,

C0�xi,t;xj,0� =

−
g

4�� 

m�even

��m� ln
�
 + i��2 + �m + ��i − � j��2


2 + m2

+ 

m�odd

��m��ln� �
 + i��2 + �m − �i − � j�2


2 + �m − �i − � j�2 �
+

1

2
ln

�
2 + �m + �i + � j�2	2

�
2 + �2�i + m�2	�
2 + �2� j + m�2	�� ,

where �i=xi /L, 
=
L /
c is the dimensionless cutoff, with

L=VF /gL being the inverse of the traversal time of the
charge density wave and 
c being the high-energy cutoff
frequency, and �= �1−g� / �1+g� is the Andreev-like reflec-
tion coefficient at the interfaces.

In terms of the dimensionless variables u=eV /�
L, �
=
Lt, the backscattering current is rewritten into the follow-
ing simple form in unit of e��
L

g /

c
g�2 /�2
L:

IBS =
i
−2g

2
�

−�

+�

d� sin u��A1 + A2 + 2A12� , �7�

with

A1/2 = �
m�even

� �
 + i��2 + m2


2 + m2 �−g��m�

� �
m�odd

� �
 + i��2 + �m − 2��1/2��2


2 + �m − 2��1/2��2 �−g��m�

,
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A12 = �
m�even

� �
 + i��2 + �m + ��1 − �2��2


2 + m2 �−g��m�

� �
m�odd

� �
 + i��2 + �m − �1 − �2�2


2 + �m − �1 − �2�2 �−g��m�

� � �
2 + �m + �1 + �2�2	2

�
2 + �m + 2�1�2	�
2 + �m + 2�2�2	�−�1/2�g��m�

.

The above expressions for the backscattering current IBS al-
low us to evaluate it for arbitrary values of the barrier posi-
tions �x1 ,x2�, the interaction strength g, and the applied volt-
age V. It is noticed that the backscattering current
contributed from an individual barrier is dependent on the
relative distance of the barrier to the wire center ���1/2��,
while that from the quantum mechanical interference term is
dependent on the location details of the double barriers
���1−�2� and �1+�2�. It seems impossible to obtain an explicit
expression for the backscattering current; we resort to nu-
merical calculations to investigate the backscattering current
in some typical cases.

III. RESULTS AND DISCUSSIONS

First, we investigate the dependence of the backscattering
current on the interaction strength. It is well known that the
interaction strength is characterized by the interaction param-
eter g= �1+U /��vF	−1/2. We have 0�g�1 for repulsive in-
teractions and g=1 for noninteracting limit. It should be
noted that the smaller the value of g, the stronger the inter-
action. In Fig. 1, we present numerical results of IBS as a
function of the applied voltage u for different typical inter-
action parameters g=0.25,0.5,0.75 as the barriers locate
symmetrically near the ends of the wire with �1/2= 	0.4.
Since the barriers are symmetrically located, the backscatter-
ing currents arising from different barriers are the same. It
can be observed that, as the interaction decreases, the oscil-
lation of the incoherent addition of the backscattering cur-
rents contributed from the two barriers disappears gradually,
while that contributed from the quantum mechanical interfer-
ence persists and is more prominent. The oscillatory behav-
ior of the backscattering current is mainly determined by the
quantum mechanical interference of the bosonic waves back-
scattering off the double barriers. We attribute the less pro-
nounced oscillation of the backscattering current in the
strong interaction case to the suppression of the quantum
mechanical interference by the electron-electron interaction.
As shown by Dolcini et al.,13 the oscillation of the back-
scattering current in the single-barrier case arises from a
combined effect of the barrier, the finite length, and the in-
teraction in the wire. The phase shift of bosonic excitations
traveling between the barrier and the interfaces is responsible
for such an oscillation and can be modulated by an applied
bias voltage. In our case with double barriers, competition
between the single-barrier interference and the double-barrier
quantum mechanical interference results in an interesting os-
cillatory behavior of the backscattering current. In the cases
of a given barrier location, the oscillation period of the back-

scattering current contributed from the quantum mechanical
interference is irrespective of the interaction strength, while
the oscillation period from the incoherent addition of the
backscattering current off different barriers is increased as
the interaction parameter is decreased and eventually be-
comes infinite in the noninteracting limit, which can be
found in Fig. 1.

Then we consider two special cases for strong interaction
�g=0.25� where the double barriers locate symmetrically
near the midpoint of the interacting wire ��1/2= 	0.01� and
right at the ends of the wire ��1/2= 	0.5�. It can be found
from Fig. 2 that in both cases the backscattering current os-
cillates in a more pronounced way compared to the case
where the double barriers are located symmetrically near the
interfaces ��1/2= 	0.4; Fig. 1�a�	. In Fig. 2, we also observe
that the oscillation frequency of the incoherent addition of
the backscattering current off the separate barriers is twice
that due to the quantum mechanical interference when the
double barriers are located at the ends of the wire, while the
two frequencies are about the same when the double barriers
are located near the midpoint of the wire. The reason is that
the round-trip ballistic time for bosonic excitations propagat-
ing between a barrier and an interface in the former case is
twice that in the later case.

Up to the present we have analyzed the current-voltage
characteristics in cases where the two barriers are symmetri-
cally located. As the barriers are located asymmetrically, it is
expected that such an asymmetry has trivial effects on the
current-voltage characteristics of weakly interacting wires
but influences significantly the transport properties of

FIG. 1. �Color online� Backscattering current IBS �in unit of
e��
L

g /
c
g�2 /�2
L	 as a function of u=eV /�
L with the double-

barrier location �1/2=x1/2 /L= 	0.4 for different interaction param-
eters: �a� g=0.25, �b� g=0.5, and �c� g=0.75. The solid line refers
to the total backscattering current IBS, the dotted line refers to the
incoherent addition of independent contributions from different bar-
riers IBS

1 + IBS
2 , and the dashed line refers to the quantum mechanical

interference term IBS
12 .
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strongly interacting wires. In Fig. 3, we provide the results of
the backscattering current of the interacting wire with sym-
metric and asymmetric locations of the barriers in both weak
interaction �g=0.75� and strong interaction �g=0.25� cases.
We find that in the weak interaction case, the backscattering
currents are about the same for symmetric and asymmetric
barrier locations �Figs. 3�a� and 3�b�	 as long as the spacing
between the double barriers is fixed. However, such a sce-
nario is changed in the strong interaction case, where the
current oscillation strongly depends on the symmetry of the
barrier locations �Figs. 3�c� and 3�d�	. It is interesting to note
that the period of current oscillation depends strongly on the
spacing between the double barriers in the weak interaction

limit; i.e., the bigger the barrier spacing, the smaller the os-
cillation period. This phenomenon cannot be observed in the
strong interaction limit. We attribute the dependence of the
current oscillation on the barrier spacing in the weak inter-
action limit to the resonant tunneling through a double-
barrier structure in one-dimensional noninteracting electronic
systems.18 In the case of strong interactions, different loca-
tions of the barriers lead to different interference patterns for
bosonic plasmonic excitations traveling between a barrier
and the interfaces, and then results in different oscillation
behaviors of the backscattering currents contributed from the
separate barriers.

Finally, we would like to point out that, depending on the
interaction strength, the backscattering current exhibits dif-
ferent scaling rules with the applied bias voltage in a finite-
length Tomonaga-Luttinger-liquid wire with double barriers,
as can be found in Figs. 1–3. This observation deserves fur-
ther investigation.

IV. CONCLUSION

In summary, we have investigated interference effects in
electron transport through a double-barrier structure in an
interacting quantum wire, which is ideally attached to two
noninteracting leads. We have found that the oscillation of
the backscattering current with the applied voltage is mainly
determined by the quantum mechanical interference due to
the coexistence of the double barriers. It is contrast to the
single-barrier case, where the current oscillation is strongly
dependent on the interference of the Andreev-like reflected
plasmonic excitations propagating between the single barrier
and the interfaces. Depending on the interaction strength and
the locations of the barriers, the competition between these
two kinds of interferences results in different oscillation and
scaling behaviors of the backscattering current with the bias
voltage.
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APPENDIX: OUTLINE OF DERIVATION OF
BACKSCATTERING CURRENT EXPRESSION

In this appendix, we outline the main formulas to calcu-
late the backscattering current based on the Keldysh func-
tional approach following Ref. 13.

The generating functional takes the form

Z�J	 =
1

NZ
� D� exp� i

�
S +

i

2
� dxJ�x���x�� , �A1�

where the action functional of the system can be written in
terms of the boson field ��x , t� as

FIG. 2. �Color online� Backscattering current IBS �in unit of
e��
L

g /
c
g�2 /�2
L	 as a function of u=eV /�
L as g=0.25 with dif-

ferent double-barrier locations: �a� �1/2=x1/2 /L= 	0.01 and �b�
�1/2=x1/2 /L= 	0.5. The solid line refers to the total backscattering
current IBS, the dotted line refers to the incoherent addition of in-
dependent contributions from different barriers IBS

1 + IBS
2 , and the

dashed line refers to the quantum mechanical interference term IBS
12 .

FIG. 3. �Color online� Backscattering current IBS �in unit of
e��
L

g /
c
g�2 /�2
L	 as a function of u=eV /�
L with different

double-barrier locations and for different interaction parameters: �a�
g=0.75, �1/2=x1/2 /L= 	0.2 �solid�, �1/2=x1/2 /L=0,0.4 �dotted�;
�b� g=0.75, �1/2=x1/2 /L= 	0.3 �solid�, �1/2=x1/2 /L=−0.15,0.45
�dotted�; �c� g=0.25, �1/2=x1/2 /L= 	0.2 �solid�, �1/2=x1/2 /L
=0,0.4 �dotted�; and �d� g=0.25, �1/2=x1/2 /L= 	0.3 �solid�,
�1/2=x1/2 /L=−0.15,0.45 �dotted�.
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S = �� dx� dt
1

2g�x�� 1

v�x�
��t��2 − v�x���x��2�

+
e

2
� dx� dtE�x,t���x,t� −� dtHB. �A2�

After we introduce the standard Keldysh time contour, de-

note by �+ and �− the complex fields on the upper and lower
time branches of the Keldysh contour, and define four
Green’s functions averaged with respect to the free Hamil-

tonian C0
����r� ;r��= ����r������r���0, the generating func-

tional is rewritten as

Z�J	 =
1

NZ
� D�	exp�−

1

2
� dr�dr� 


���=	

���r���C−1�����r�;r������r���
�exp� 


�=	
� i�e

�
�
� dr�E�r�����r�� −

i�

�
�

−�

+�

dt�HB���	 +
i


2
� dxJ�x����x��� ,

where C−1�r ;r�� is the inverse of a 2�2 matrix formed from
the above four Green’s functions.

Defining the following matrices,

� = ��+�r�
�−�r�

� ,

J = � e

�

 2

�
E�r�

J�r�
� ,

Q =
1

2

�1 − 1

1 1
���r − r�� , �A3�

and

C0 = �C0
++�r,r�� C0

+−�r,r��
C0

−+�r,r�� C0
−−�r,r��

� , �A4�

the generating functional is reduced to the following simpli-
fied form:

Z�J	 =
1

NZ
� D�e�−�TC0

−1�+2iJTQ��/2

�exp�−
i

�


�=	

�� dt�HB���	� . �A5�

After shifting the fields �→�+AJ ,AJ= iC0QTJ, one ob-
tains a factorized form of the generating functional,

Z�J	 = e−JTQC0QTJ/2�exp�−
i

�


�

�� HB��� + AJ
�	dt���

0

.

�A6�

From the expression of current operator �4�, we have

�I�x,t�� =
e


�
�t���x,t�� =

e

�

�t� − i

2
� �Z�J	

�J�x� �J=0
�

=
e


�
�t� ie

�
�
� dr�C0

R�x;r��E�r��

−
1


2�
�


�=	
� dt�

�HB��� + AJ
�	

���

�AJ
��r��

�J�x� �
0
�

= e2V/h − IBS, �A7�

where C0
R�r ;r��=��t− t������r� ,��r��	�0 is the retarded

Green’s function and the backscattering current takes the fol-
lowing form:

IBS = − 

i=1,2

�
�

e2 � dt��0�x;ri���jB
+�ri���→. �A8�

Here �0�r ;r��=2ie2�tC0
R�r ;r�� /h is the local conductivity of

clean wire and the backscattering current operator jB
��x�=

−�e /����HB���+A0
�	 /���x�� with A0�r�

= ie
�
�

�dx�C0
R�r ;x��E�x���¯ �→ denotes an average along the

Keldysh contour with respect to the shifted Hamiltonian
H→=H0��	+HB��+A0	.

Some algebras after substitution of the expression of HB
into Eq. �A8� finally yield

IBS = −
2��

e



i=1,2
�

−�

+�

dt��0�x,t;xi,t��

��exp�−
i

�


�=	

��
−�

+�

dt�HB��� + 
0t�	�
�sin�
4��+�xi,t�� + 2kFxi + 
0t�	�

0

. �A9�
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